

CubeWheel

Momentum/Reaction wheels for nanosatellites

User Manual

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 2

Table of Contents

List of Acronyms/Abbreviations ... 3

List of Figures ... 4

List of Tables ... 4

1. Introduction ... 6

2. Functional Description .. 7

2.1 Hardware ... 7

2.2 Software .. 7

2.3 Mounting .. 9

2.4 Communication interfaces .. 10

3. Specifications ... 11

4. Getting Started .. 13

4.1 Unpacking the CubeWheel package ... 13

4.2 Before getting started ... 13

4.3 CubeSupport software .. 13

4.4 Hardware setup ... 15

4.5 Getting to know the CubeWheel interface panel ... 16

4.6 Incoming health check .. 23

5. Electrical Connection .. 24

5.1 Physical connector .. 24

5.2 Power ... 24

5.3 Communication ... 25

6. Communicating with a CubeWheel Unit .. 26

6.1 UART interface ... 26

6.2 I2C interface ... 29

6.3 CAN interface ... 31

6.4 Telecommands and telemetry requests ... 33

7. Document Version History ... 43

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 3

List of Acronyms/Abbreviations

ADC Analog to Digital Converter

ADCS Attitude and Determination Control System

BLDC Brushless DC

DC Direct Current

EOM End-Of-Message

ESL Electronic Systems Laboratory

FPGA Field Programmable Gate Array

ICD Interface Control Document

I2C Inter- Integrated Circuit

MCU Microcontroller Unit

OBC On-board Computer

PBH Piggyback Header

RTC Real-time Clock

RW Reaction Wheel

SOM Start-Of-Message

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

TBC To Be Confirmed

TBD To Be Determined

TC Telecommand

TLM Telemetry

UART Universal Asynchronous Receiver/Transmitter

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 4

List of Figures

Figure 1 – CubeWheel Small and Small Plus angular momentum vector .. 9

Figure 2 – CubeWheel Medium and Large angular momentum vector ... 9

Figure 3 – The General tab (top) and the Configuration tab (bottom) in CubeSupport 17

Figure 4 – The sections of the General tab.. 19

Figure 5 – The sections of the Configuration tab ... 20

Figure 6 – CubeWheel telemetry logs created by CubeSupport .. 22

Figure 7 – CubeWheel telemetry log example ... 22

Figure 8 – Suggested power connection to a single CubeWheel unit ... 24

Figure 9 – Suggested power connection to multiple CubeWheel units .. 25

Figure 10 – Suggested I2C connection to a CubeWheel unit ... 29

Figure 11 – Example of I2C telemetry request .. 30

Figure 12 – Example of I2C telecommand .. 30

Figure 13 – Suggested CAN connection to a CubeWheel unit.. 31

Figure 14 – CAN identification packet .. 31

Figure 15 – Example of CAN identification packet during telemetry request 32

Figure 16 – Example of CAN identification packet during telemetry response 32

List of Tables

Table 1 – Small CubeWheel specifications .. 11

Table 2 – Small Plus CubeWheel specifications ... 11

Table 3 – Medium CubeWheel specifications .. 12

Table 4 – Large CubeWheel specifications .. 12

Table 5 – UART specifications for CubeWheel units .. 26

Table 6 – UART protocol character definition .. 26

Table 7 – Example of UART telemetry request .. 27

Table 8 – Example of UART telemetry response ... 27

Table 9 – Example of UART telecommand .. 28

Table 10 – UART telecommand response .. 28

Table 11 – Example of special character in UART data bytes ... 28

Table 12 – CAN message types ... 32

Table 13 – List of telecommands .. 33

Table 14 – List of telemetry requests ... 33

Table 15 – Reset command format .. 34

Table 16 – Wheel reference speed command format ... 34

Table 17 – Wheel commanded torque command format ... 34

Table 18 – Motor power state command format .. 34

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 5

Table 19 – Encoder power state command format .. 35

Table 20 – Hall power state command format .. 35

Table 21 – Control mode command format ... 35

Table 22 – Control mode enumeration values ... 35

Table 23 – Backup wheel mode command format... 36

Table 24 – Clear errors command format .. 36

Table 25 – Set I2C address command format ... 36

Table 26 – Set CAN mask command format ... 36

Table 27 – Set PWM gain command format ... 37

Table 28 – Set main gain command format .. 37

Table 29 – Set backup gain command format ... 37

Table 30 – Identification telemetry format .. 38

Table 31 – Extended identification telemetry format .. 38

Table 32 – Wheel status telemetry format .. 39

Table 33 – Wheel speed telemetry format .. 39

Table 34 – Wheel reference telemetry format ... 40

Table 35 – Wheel current telemetry format .. 40

Table 36 – Wheel data telemetry format ... 40

Table 37 – Wheel data additional telemetry format .. 41

Table 38 – PWM gain telemetry format ... 41

Table 39 – Main gain telemetry format .. 41

Table 40 – Backup gain telemetry format .. 42

Table 41 – Status and error flags telemetry format ... 42

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 6

1. Introduction

Momentum and reaction wheels are used to exchange angular momentum with a satellite

body. This momentum exchange induces a control torque, which can be used to change the

satellite’s attitude or to absorb disturbances from the space environment (e.g. aerodynamic

disturbance). Momentum/reaction wheels are commonly used in satellites that have moderate

to high pointing accuracy requirements.

This document will aim to familiarize the user with CubeSpace’s momentum/reaction wheel

unit, the CubeWheel. A brief functional description of the unit will be followed by the

specifications of the various sizes of CubeWheel units. An in-depth guide to getting started

with a CubeWheel will also be provided in this document. This document is applicable to all

the different sizes of CubeWheel units.

The CubeWheel unit contains electrostatic sensitive components.

Under no circumstances should the device be handled without anti-

static protection.

The CubeWheel unit is a delicate mechanical assembly. Always handle

with great care, preferably using gloves.

When handling the CubeWheel, always place the unit on a flat surface,

preferably an anti-static mat. It is furthermore important to handle the

unit in a clean environment, as required for flight-model components.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 7

2. Functional Description

This section will describe the hardware and software that are enveloped in a CubeWheel unit.

2.1 Hardware

2.1.1 Mechanical assembly

The CubeWheel unit consists of a rotating flywheel attached to a brushless DC (BLDC) motor.

A small PCB, which includes the necessary drive, control, and interface electronics, is attached

to the bottom of the BLDC motor and is protected by an aluminium cover. The primary function

of the electronics PCB is to measure and control the speed of the motor. The top cover of the

CubeWheel unit supplies the necessary mounting holes for the user to mount the CubeWheel

in any one of its 3 axes. The mounting of a CubeWheel will be discussed in Section 2.3.

2.1.2 Size

Three sizes of CubeWheels are available: Small, Small Plus, Medium, and Large. Small and Small

Plus CubeWheel units are supplied with a 14-way wire harness terminated in a female

connector, whereas the Medium and Large units are supplied with a 14-way screw-down

connector. Refer to the CubeWheel Interface Control Document (ICD) for more information

regarding the harnesses and connectors.

2.1.3 Speed measurement

The speed of the motor is measured by two independent sources. The primary source of speed

measurements is a magnetic encoder and the secondary source is the internal Hall sensors of

the motor. Independent switches control the power to each one of these measurement

sources. The speed control algorithms use the encoder measurements by default, but it can

also use the Hall sensor measurements as a backup. Both measurements are available as

telemetry.

2.2 Software

The electronics PCB houses a microcontroller unit (MCU) that is responsible for commanding

the motor driver, measuring the wheel’s speed, performing speed control algorithms,

measuring the motor’s current, toggling power switches, and responding to telemetry requests

and telecommands.

Two main aspects of the MCU’s software are applicable to the user: the control state and

backup mode.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 8

2.2.1 Control state

The software on the MCU is governed by various control states. The MCU toggles power

switches and commands the motor driver based on the current control state. There are four

control states: (1) Idle, (2) No Control, (3) Duty Cycle, and (4) Speed Controller. The CubeWheel

unit will respond to telemetry requests and execute telecommands in any control state.

The Idle state is the initial start-up state, during which the unit has the lowest power

consumption. The power switches to the motor and other non-critical components are

switched off. Note that during this state, the motor current measurements are invalid.

During the No Control state, power to the motor is switched off, but sensor feedback (i.e. speed

measurements) is still maintained. Note that during this state, the motor current

measurements are invalid. The backup speed measurements are also invalid, because the

motor is switched off.

A duty cycle command will activate the Duty Cycle state. This state will maintain a reference

control signal to the motor.

The speed of the wheel can actively be controlled (used either the primary or the secondary

speed measurement as feedback) if the Speed Controller state is enabled. The speed reference

can be set via telecommand.

2.2.2 Backup mode

Redundancy is incorporated through the availability of two speed measurements (from the

encoder, at 10 Hz, and from the Hall sensors, at 1 Hz). The speed control algorithms are

therefore not only reliant on the functioning of the encoder, but it can also use the Hall sensors

to follow the given reference speed.

The user has the ability to enable or disable the so-called backup mode, which will switch off

the encoder when activated via telecommand. Backup mode is disabled by default. It should

be noted that the default settling time of the backup mode speed controller is roughly double

that of the encoder-based speed controller. The backup mode cannot control the wheel speed

at low speeds and only react to speed commands larger than 100 RPM.

One drawback of the backup mode is the inability to determine the direction of rotation

autonomously. The user should therefore refrain from changing the reference direction of

rotation too often when in backup mode. The CubeWheel unit will detect a change in direction

and will automatically command a zero duty cycle for 30 seconds before controlling the wheel

speed to the new reference speed.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 9

2.3 Mounting

Various sets of mounting holes can be found on the cover of the CubeWheel unit, allowing

the unit to be mounted in any of the 3 axes. Refer to the CubeWheel ICD for the mechanical

interface definition of the mounting holes.

A positive rotation (resulting from a positive wheel speed reference or duty cycle command)

can be translated to an angular momentum vector pointing out of the bottom of the

CubeWheel unit. The aforementioned is illustrated in Figure 1.

Figure 1 – CubeWheel Small and Small Plus angular momentum vector

Figure 2 – CubeWheel Medium and Large angular momentum vector

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 10

2.4 Communication interfaces

All CubeWheel units can be configured to interface via I2C, UART, or CAN. The specifications

of each of these three protocols can be found in Section 6 of this document. It should be noted

that multiple communication interfaces can be used simultaneously.

A complete list of telemetry requests and telecommands can be found in Section 6.4 of this

document.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 11

3. Specifications

Table 1 – Small CubeWheel specifications

Specification Value Notes

Dimensions 28 x 28 x 26.2 mm Excl. internal harnesses, see ICD

Mass ±60 g Depends on harness length

Nominal momentum 1.7 mNms @ 8000 rpm

Nominal torque 0.23 mNm

Supply voltage 3.3 V / (6.5 V – 16.0 V)

Operating temperature -10°C to 60°C

Static imbalance <0.003 g∙cm

Dynamic imbalance <0.005 g∙cm2

Power consumption 3.3 V (mW) Vbattery
 (mW)

• Vbattery = 8.0 V

• CAN electronics populated

50 0 Idle state

75 26 All electronics on, 0 rpm

75 50 @ 2000 rpm

75 640 Maximum torque

Table 2 – Small Plus CubeWheel specifications

Specification Value Notes

Dimensions 33.4 x 33.4 x 29.7 mm Excl. internal harnesses, see ICD

Mass ±90 g Depends on harness length

Maximum momentum 3.6 mNms @ 6000 rpm

Nominal torque 2.3 mNm

Supply voltage 3.3 V / (6.5 V – 16.0 V)

Operating temperature -10°C to 60°C

Static imbalance <0.004 g.cm

Dynamic imbalance <0.014 g.cm2

Power consumption 3.3 V (mW) Vbattery
 (mW)

• Vbattery = 8.0 V

• CAN electronics

populated

50 0 Idle state

75 12 All electronics on, 0 rpm

75 64 @ 2000 rpm

75 2300 Maximum torque

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 12

Table 3 – Medium CubeWheel specifications

Specification Value Notes

Dimensions 46 x 46 x 31.5 mm Excl. internal harnesses, see ICD

Mass 150 ± 2 g

Maximum momentum 10.8 mNms @ 6000 rpm

Nominal torque 1.0 mNm

Supply voltage 3.3 V / (6.5 V – 16.0 V)

Operating temperature -10°C to 60°C

Static imbalance <0.004 g.cm

Dynamic imbalance <0.014 g.cm2

Power consumption 3.3 V (mW) Vbattery
 (mW)

• Vbattery = 8.0 V

CAN electronics populated

50 0 Idle state

75 12 All electronics on, 0 rpm

75 130 @ 2000 rpm

75 2300 Maximum torque

Table 4 – Large CubeWheel specifications

Specification Value Notes

Dimensions 57 x 57 x 31.5 mm Excl. internal harnesses, see ICD

Mass ±225 g

Nominal momentum 30 mNms @ 6000 rpm

Nominal torque 2.3 mNm

Supply voltage 3.3 V / (6.5 V – 16.0 V)

Operating temperature -10°C to 60°C

Static imbalance <0.006 g.cm

Dynamic imbalance <0.05 g.cm2

Power consumption 3.3 V (mW) Vbattery
 (mW)

• Vbattery = 8.0 V

CAN electronics populated

50 0 Idle state

75 12 All electronics on, 0 rpm

75 280 @ 2000 rpm

75 4500 Maximum torque

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 13

4. Getting Started

This section will provide an in-depth guide to getting started with a CubeWheel unit. The aim

of this section is to familiarise the user with the CubeWheel unit and the supporting software,

CubeSupport.

It is important to read every instruction in this section carefully and to perform the

instructions sequentially.

4.1 Unpacking the CubeWheel package

The received Peli-Case contains the following items:

• CubeWheel unit(s)

• Support PCB

• UART-to-USB cable

• CubeSpace flash drive

The included items will allow the user to interface with a CubeWheel unit without an OBC.

4.2 Before getting started

The following additional items are required before the user can get started with the

CubeWheel:

• Adjustable bench power supply (capable of Vmax > 16 V, Imax > 1A)

• DC power plug (inner diameter = 2.1 mm, outer diameter = 5.5 mm, inside-positive)

• Multi-meter or oscilloscope

• CubeSupport software (see Section 4.3)

• Computer with an open USB port (running Windows 7 or later)

4.3 CubeSupport software

4.3.1 What is CubeSupport?

CubeSupport allows the user to interface with a CubeWheel via the UART connection. No

additional software or hardware (except the items mentioned in Section 4.2) is required, which

means that the CubeWheel can act as a standalone module.

The software enables the user to request telemetry and to send telecommands from/to a

CubeWheel. The user can also set a CubeWheel’s I2C address and CAN mask with the

CubeSupport software.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 14

4.3.2 Connecting to the UART cable

Follow the instructions below to verify the connection between CubeSupport and the UART

cable:

• Plug the UART-to-USB cable into the computer’s open USB port.

• The computer should detect the cable and install the drivers by itself.

• After a couple of minutes, a message indicating the successful installation of the drivers

should appear.

• Browse to the folder containing CubeSupport and launch the application.

• Add a new UART interface by clicking on the button (not on the drop-down arrow).

A new interface should appear, as shown below.

• Connect to the UART cable by clicking on the button.

• The connection status should turn green if the connection was successful, as illustrated

below.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 15

• Disconnect from the UART-to-USB cable by clicking on the button.

4.4 Hardware setup

4.4.1 Connecting power to the support PCB

Follow the instructions below to set up the support PCB:

• Set the voltage on the power supply to the desired bus battery voltage (e.g. 8 V, up to

a maximum of 16.0 V).

• Set the current limit on the power supply to 1 A.

• Plug the DC power cable into the support PCB.

• Connect the wheel harness to the support PCB.

• Switch on the support PCB and check that both LED light up.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 16

4.4.2 Connecting the CubeWheel to CubeSupport

Follow the instructions below to connect the CubeWheel to the CubeSupport software:

• Plug the supplied UART-to-USB cable into the support PCB (the header is labelled as

“UART” on the PCB). Plug the UART-to-USB cable into the computer (if it is not plugged

in already).

• Open the CubeSupport application (if it is not open already).

• Add a new UART interface by clicking on the button.

• Connect to the CubeWheel by clicking on the button.

• A successful connection should yield an interface panel, as shown below. Note that

most of the fields will still be empty.

• If the connection is not successful, check the following:

✓ Verify that the power supply is switched on and that the current limit has not been

reached.

✓ Verify that the CubeWheel is plugged into the support PCB.

✓ Verify that the UART connection cables are plugged in correctly.

✓ Probe the pins on the support PCB header that are marked 3V3, Vbat and EN.

4.5 Getting to know the CubeWheel interface panel

The CubeWheel interface panel in the CubeSupport software provides a user-friendly

environment from which telemetry can be requested and telecommands can be sent. It is

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 17

important for the user to become familiarized with the interface panel before attempting to

use it. The various sections of the software will be explained in this section.

The interface panel consists of two tabs: General and Configuration, as illustrated in Figure 3.

Figure 3 – The General tab (top) and the Configuration tab (bottom) in CubeSupport

The General tab contains display fields for the following:

• wheel identification

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 18

• wheel status

• error flags

• wheel speed and current

The Configuration tab, which will seldom be used, enables the user to change the following:

• the I2C address

• CAN mask

• gains of the speed controllers running on the CubeWheel’s MCU

* The correct functioning of the CubeWheel is heavily dependent on the controller

gains. Consult CubeSpace before changing the controller gains.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 19

4.5.1 General tab

Figure 4 illustrates the various sections (or blocks) of the General tab. Each block is briefly

described below:

1. Identification – The identification telemetry of the CubeWheel is displayed in this

block.

2. Wheel Data – The wheel speed reference and measurements, the wheel current, and

the commanded duty cycle is displayed in this block.

3. Wheel Status – The current control mode, the status of the backup mode, the state of

the various switches, and the combined error flag is displayed in this block.

4. Error Flags – The individual error flags are displayed in this block.

5. Mode Settings – The current control mode can be selected and the backup mode can

be enabled/disabled using this block.

6. Automated Tests – Standard pre-defined tests can be performed using this block.

7. Motor Commands – The reference wheel speed and the commanded duty cycle can

be set using this block.

8. Application Settings – This block houses the auto-update and data logging settings.

Figure 4 – The sections of the General tab

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 20

4.5.2 Configuration tab

Figure 5 illustrates the various sections (or blocks) of the Configuration tab. Each block is briefly

described below:

1. Address and Mask – The I2C address and CAN mask of the CubeWheel can be read

and configured using this block.

2. General PWM Gain – The gain of the PWM register that commands the motor driver

can be read and configured using this block.

3. Main Controller Gain – The gains of the main speed controller (i.e. when backup mode

IS NOT enabled) can be read and configured using this block.

4. Backup Controller Gain – The gains of the backup speed controller (i.e. when backup

mode IS enabled) can be read and configured using this block.

Do not use blocks 2, 3, and 4 without consulting CubeSpace.

Figure 5 – The sections of the Configuration tab

4.5.3 Requesting telemetry

The request button in the CubeWheel interface panel is denoted by the symbol. Clicking

on this button will send a single request to the CubeWheel for the relevant telemetry.

4.5.4 Sending a telecommand

The transmit button in the interface panel is denoted by the symbol. Clicking on this

button will send the relevant telecommand to the CubeWheel once.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 21

4.5.5 Auto Update and the update period

CubeSupport has the ability to automatically update several blocks under the General tab by

requesting telemetry from the CubeWheel unit at a specified sample period. Auto Update can

be enabled by checking relevant box in the Application Settings block.

4.5.6 Creating a telemetry log

The CubeSupport software provides the user with the capability to log CubeWheel telemetry.

To create a telemetry log, simply check the Log Data box in the Application Settings block

under the General Tab. Note that Auto Update must be enabled before telemetry can be

logged.

CubeSupport generates the log as a .txt file in CSV format. The filename of the log will include

the CubeWheel’s serial number and a timestamp. The following telemetry data is logged:

• Runtime in seconds (including the millisecond telemetry)

• Backup mode flag

• Control mode

• Motor switch state

• Hall sensor switch state

• Encoder switch state

• Error code as a decimal value (which contains all the error flags)

• Wheel speed measured by magnetic encoder in rpm

• Wheel speed measured by Hall sensors (backup speed measurement) in rpm

• Reference wheel speed in rpm

• Duty cycle (including direction) of PWM control signal expressed as a percentage

• Motor current (drawn directly from power supply) in mA

Figure 6 illustrates how the logs are created in the relevant folder. Note that while

CubeSupport is busy logging telemetry, the size of the log will be given as 0 KB (as is the case

with the last log file in Figure 6). Do not open a log file while CubeSupport is busy logging

to that file. To view a log, first ensure that Log Data on the General tab under the Application

Settings block is not selected before attempting to open the file.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 22

Figure 6 – CubeWheel telemetry logs created by CubeSupport

An example of a CubeWheel telemetry log file is shown in Figure 7.

Figure 7 – CubeWheel telemetry log example

Note that the runtime in seconds is stored as a 16-bit unsigned integer on the CubeWheel

MCU, which means that it will overflow and start at 0 again when it increments from 65535.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 23

4.6 Incoming health check

It is necessary to perform an incoming health check as soon as possible after receiving a

CubeWheel unit(s). This section will guide the user through the health check, which is identical

to the outgoing health check which is performed at CubeSpace before delivery.

Do not attempt to perform the incoming health check before working through Section

4.1 to Section 4.5 of this document.

4.6.1 Before the incoming health check

Follow the instructions below to set up the incoming health check:

• Unpack the contents of the CubeWheel package in a clean environment (Section 4.1).

• Connect power to the support PCB (Section 4.4.1).

• Connect the CubeWheel to CubeSupport (Section 4.4.2).

• Keep a copy of the CubeWheel Health Check document nearby, as it must be filled in

during the incoming health check.

4.6.2 Performing the incoming health check

The procedures of the incoming health check can be found in the CubeWheel Health Check

document. Measured and observed results must also be captured onto this document.

4.6.3 After the incoming health check

Follow the instructions below to end the incoming health check:

• Disconnect the UART connection from the support PCB.

• Disconnect the power from the support PCB.

• Disconnect the CubeWheel from the support PCB.

• Carefully place the CubeWheel unit and the support PCB back into their respective anti-

static bags and place the bags into the supplied Peli-Case for storage.

• Sign the CubeWheel Health Check document (on every page with a signature line)

and send the document to CubeSpace as soon as possible.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 24

5. Electrical Connection

5.1 Physical connector

The CubeWheel unit has a single 14-way connection which contains all the required electrical

connections to power and to communicate with the unit. Refer to the CubeWheel ICD for the

pin definition of the connector.

The Small Plus wheel has a harness soldered in on the wheel side that terminates in a 14-way

Samtec SFSDT-series screw down connector. The Small wheel has an additional Molex header

on the wheel itself to allow the user to use a different harness. The Medium and Large

CubeWheels house a 14-way screw-down connector from the Samtec TFM-series, which mates

with a Samtec SFSDT-series wired connector. All the Samtec connectors have a current rating

of at least 2.9 A and an operating temperature of -40°C to +125°C. For more information

regarding the connectors, refer to www.samtec.com.

5.2 Power

A CubeWheel unit requires 3.3 V and the battery voltage (Vbattery > 6.5 V) to operate. The digital

electronics are powered by 3.3 V, whereas the motor driver (i.e. the motor) runs off the battery

voltage. CubeWheel contains power switches for both the 3.3V and for VBat supplies. The

power switch for the 3.3V supply is toggled using the externally controlled ENABLE input and

is default off. ENABLE must be pulled high to switch the wheel on. The power switch for the

battery supply is controlled by the CubeWheel itself and is switched on whenever CubeWheel

gets a speed/PWM command.

A simplified suggested electrical power diagram to a single CubeWheel unit and to multiple

CubeWheel units are shown in Figure 8 and Figure 9 respectively.

Figure 8 – Suggested power connection to a single CubeWheel unit

http://www.samtec.com/

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 25

Figure 9 – Suggested power connection to multiple CubeWheel units

5.3 Communication

The various communication interfaces on a CubeWheel unit and their respective protocols are

discussed in detail in Section 6 of this document.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 26

6. Communicating with a CubeWheel Unit

6.1 UART interface

6.1.1 Buffer

The CubeWheel unit contains a UART buffer to isolate the unit. The logic of the unit operates

at 3.3 V. Using a higher voltage than 3.3 V may result in damage to the electronics.

6.1.2 Interface specifications

The specifications of the CubeWheel’s UART interface are listed in Table 5.

Table 5 – UART specifications for CubeWheel units

Parameter Value

Baud Rate 115200

Data Bits 8

Parity None

Stop Bits 1

6.1.3 Protocol

Any telemetry (TLM) or telecommand (TC) packet sent to/from the CubeWheel unit is initiated

by a unique ID. In the case of a TC or a TLM reply, the additional data bytes also form part of

the TLM/TC packet. An additional UART protocol is furthermore added which encapsulates the

TLM/TC packet.

A UART transmission to/from a CubeWheel unit starts with a special character followed by a

start-of-message (SOM) character. At the end of the UART packet, the special character is sent

again followed by an end-of-message (EOM) character. If the UART packet itself contains a

special character, that special character needs to be followed by another special character. The

CubeWheel unit will only respond if this protocol is followed by the master and will return TLM

or a TC acknowledge response with the same protocol. A UART error flag will be set by the

CubeWheel if an incorrect protocol is received.

The characters relevant to the UART protocol are listed in Table 6.

Table 6 – UART protocol character definition

Character Value

Special character 0x1F

SOM 0x7F

EOM 0xFF

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 27

A message will therefore begin with the sequence 0x1F, 0x7F and end with the sequence 0x1F,

0xFF. Table 7 illustrates the format of a TLM request to the CubeWheel unit via UART, whereas

Table 8 depicts the format of the unit’s response to the request.

Table 7 – Example of UART telemetry request

0x1F 0x7F TLM frame ID 0x1F 0xFF

Start-of-message End-of-message

Table 8 – Example of UART telemetry response

0x1F 0x7F TLM byte 0 TLM byte 1 … 0x1F 0xFF

Start-of-message End-of-message

The CubeWheel unit will acknowledge the receipt of a TC by responding with either a 0 (if the

TC was received successfully) or a 1 (invalid TC identifier). A telecommand via UART must be

populated with the correct amount of data bytes. Failure to do so may cause unexpected

behaviour from the CubeWheel unit. Table 9 illustrates the format of a TC to the CubeWheel

unit via UART and Table 10 shows the format of the unit’s response to the TC.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 28

Table 9 – Example of UART telecommand

0x1F 0x7F TC ID TC byte 1 TC byte 2 ... 0x1F 0xFF

Start-of-message End-of-message

Table 10 – UART telecommand response

0x1F 0x7F TLM frame ID 0x1F 0xFF

Start-of-message 0x00 or 0x01 End-of-message

Whenever a data byte matches the special character, it will be replaced with the sequence

0x1F, 0x1F. This process enables the receiver of the message to differentiate between a data

byte containing 0x1F and the start-of-message and end-of-message identifiers. Table 11

illustrates how a data byte matching the special character is handled.

Table 11 – Example of special character in UART data bytes

0x1F 0x7F ...
Byte

i-1

Byte

i

Extra

byte

Byte

i+1
... 0x1F 0xFF

Start-of-message 0x?? 0x1F 0x1F 0x?? End-of-message

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 29

6.2 I2C interface

6.2.1 Buffer and pull-up resistors

Pull-up resistors on the I2C bus need to be supplied by the master.

The CubeWheel unit contains an I2C buffer to isolate the unit from the rest of the I2C bus. Pull-

up resistors are required on the data and clock lines between the unit and the master. The I2C

logic of the unit operates at 3.3 V. Using a higher bus voltage than 3.3 V may result in

damage to the electronics. Refer to Figure 10 for the suggested I2C connection between a

CubeWheel and an I2C master.

Master
CubeWheel

Unit

SDA

SCL

3V3

Figure 10 – Suggested I2C connection to a CubeWheel unit

6.2.2 Addressing

The CubeWheel unit acts as an I2C slave node with 7-bit addressing. The 8-bit read and write

addresses of the unit are saved within the MCU’s EEPROM and can be changed through the

appropriate TC or by using the CubeSupport software.

The default I2C write address of a CubeWheel unit is 0xD0 (or 208 in decimal). The I2C read

address of the CubeWheel is simply the write address plus 1. For example, if the I2C write

address of a unit is 0xD0, then its I2C read address is 0xD1 (or 209). Note that the I2C write

address of a CubeWheel unit must be an even number.

If multiple CubeWheel units are to be used on the same I2C bus, then their I2C write addresses

must be separated by at least 2. For example, if 3 units are used, their I2C write addresses can

be 208 (or 0xD0), 210 (or 0xD2), and 212 (or 0xD4).

The I2C address of a CubeWheel unit can be changed using the appropriate TC. The unit’s I2C

address will instantly change and will be written to the on-board EEPROM. Wait 5 seconds

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 30

after sending the new I2C address to ensure the writing to EEPROM is complete. When

the unit is power cycled or manually reset (via TC) the new address will be read out of EEPROM.

An I2C error flag will be set by the CubeWheel unit if an error occurred during an I2C

transaction.

6.2.3 Protocol

Telemetry is requested from a CubeWheel unit on the I2C bus by performing a combined read-

write operation. The first byte following the start condition is the write address of CubeWheel.

The write address is followed by the telemetry identifier, followed by another start condition

(without a preceding stop condition).

After the second start condition, the I2C read address is written by the master. The master then

issues a number of read cycles depending on the length of the TLM frame. An example of the

telemetry request process explained above is depicted in Figure 11. Note that an “S” indicates

a start condition and a “P” indicates a stop condition.

S 0xD0 TLM ID S 0xD1 TLM byte 0 ... P
 Master writes

node address

(write operation)

Master writes

telemetry frame

ID

 Master writes

node address

(read operation)

Master reads first

TLM data byte

Figure 11 – Example of I2C telemetry request

Telecommands are sent by performing a master write to the CubeWheel unit. The first data

byte (after the address byte) is the TC identifier, followed by the TC parameters (or data bytes).

An example of the TC sending process explained above is shown in Figure 12.

S 0xD0 TC ID TC data 0 ... P
 Master writes

node address

(write operation)

Master writes

telecommand ID

Master writes

data bytes

Figure 12 – Example of I2C telecommand

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 31

6.3 CAN interface

6.3.1 Bus configuration

The CubeWheel unit does NOT have a termination resistor between

the CANL and CANH lines. Clearly specify at time of placing order if

termination resistor should be added.

The CubeWheel unit contains a CAN transceiver module to isolate the unit from the rest of the

CAN bus. The combination of the transceiver and an on-board CAN controller module allows

the CubeWheel unit to interface with CAN bus voltage levels of 3.3 V or 5 V. There is no

termination resistor populated between the CANH and CANL lines by default.

Master
CubeWheel

Unit

CANH

CANL

Figure 13 – Suggested CAN connection to a CubeWheel unit

The CubeWheel unit acts as a slave on a 1 Mbps CAN bus.

6.3.2 Addressing

The CAN address (or mask) of a CubeWheel unit can be changed using the appropriate TC.

The unit’s CAN mask will instantly change and will be written to the on-board EEPROM. Wait

5 seconds after sending the new mask to ensure the writing to EEPROM is complete.

When the unit is power cycled or manually reset (via TC) the new mask will be read out of

EEPROM. A CAN error flag will be set by the CubeWheel unit if an error occurred during CAN

transaction.

6.3.3 Protocol

The CubeWheel unit will only respond to a CAN message if the destination mask in the CAN

identification packet is matched with the mask of the unit. The unit makes use of the extended

identification packet (29-bit ID) and can be broken into the segments illustrated in Figure 14.

MSB LSB

Message type Channel/ID Source mask Destination mask
5 Bits 8 Bits 8 Bits 8 Bits

Figure 14 – CAN identification packet

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 32

The Channel/ID byte in Figure 14 is the specific TC or TLM ID, as defined in Section 0 of this

document. The Message Type byte is defined in Table 12.

Table 12 – CAN message types

Message type Identifier Description

Telecommand Request 0x01 Command/Request

Telecommand Response 0x02 Acknowledgement

Telecommand Not Acknowledge 0x03 Command Failure

Telemetry Request 0x04 Request

Telemetry Response 0x05 Response

Telemetry No Acknowledge 0x06 Request Failure

For example, if the standard identification telemetry (ID 0x80) is requested by the master (with

address/mask 0x01) from a CubeWheel unit (with address/mask 0x03) then the CAN

identification packet will be [0x04, 0x80, 0x01, 0x03], as illustrated in Figure 15.

MSB LSB

0x04 0x80 0x01 0x03
Message Type Channel/ID Source Mask Destination Mask

Figure 15 – Example of CAN identification packet during telemetry request

The identification packet of the CubeWheel’s response to the above-mentioned telemetry

request will be [0x05, 0x80, 0x03, 0x01], as illustrated in Figure 16.

MSB LSB

0x05 0x80 0x03 0x01
Message Type Channel/ID Source Mask Destination Mask

Figure 16 – Example of CAN identification packet during telemetry response

The identification packet from Figure 16 will be followed by the rest of the CAN header and

the 8 byte TLM response. Telecommands and telemetry failures should only exist when

supplying an invalid TC/TLM ID or not sending the correct data in the case of telecommands

and will result in a CAN reply containing either a 0x03 or 0x06 message type.

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 33

6.4 Telecommands and telemetry requests

This section will list all the available telecommands and telemetry requests to a CubeWheel

unit. Specific detail (e.g. length, bit description, etc.) regarding each TC and TLM request will

also be given. Note that the tables in this section were automatically generated.

Table 13 – List of telecommands

ID Name Description Length (bytes)

1 Reset Perform a microcontroller reset 1

2 Wheel Reference Speed Set momentum wheel reference speed 2

3 Wheel Commanded Duty Set momentum wheel commanded duty cycle 2

7 Motor Power State Turn motor power on/off 1

8 Encoder Power State Turn encoder power on/off 1

9 Hall Power State Turn Hall sensors power on/off 1

10 Control Mode Set the motor control mode 1

12 Backup Wheel Mode Set the back-up wheel mode 1

20 Clear Errors Clear the processor error flags 1

31 Set I2C Address Set I2C address 1

32 Set CAN Mask Set CAN mask 1

33 Set PWM Gain Set general PWM proportional gain 3

34 Set Main Gain Set gain of main speed controller 6

35 Set Backup Gain Set gain of backup speed controller 6

Table 14 – List of telemetry requests

ID Name Description Length (bytes)

128 Identification Identification information for this node 8

129 Extended Identification Extended Identification information on this node 4

130 Wheel Status Current status telemetry of wheel electronics 8

133 Wheel Speed Wheel speed measurement 2

134 Wheel Reference Wheel reference speed 2

135 Wheel Current Wheel current measurement 2

137 Wheel Data Complete wheel data 6

138 Wheel Data Additional Additional wheel data 4

139 PWM Gain General PWM gain 3

140 Main Gain Main speed controller gain values 6

141 Backup Gain Backup speed controller gain values 6

145 Status and Error Flags Processor status and error flags 1

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 34

Table 15 – Reset command format

ID 1 Parameters Length

(bytes)

1

Description Perform a microcontroller reset

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 8 Reset

Parameter

UINT Reset parameter. This has to be set to

85 (decimal) to perform the reset.

Table 16 – Wheel reference speed command format

ID 2 Parameters length

(bytes)

2

Description Set momentum wheel reference speed

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Reference

Speed

INT Wheel reference speed. Raw parameter

value is obtained using the formula: (raw

parameter) = ((formatted value))*2.0

(formatted value is in [RPM] units)

Table 17 – Wheel commanded duty command format

ID 3 Parameters

length (bytes)

2

Description Set momentum wheel commanded duty cycle

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Duty

Cycle

INT Duty cycle of motor PWM control signal.

This is the open-loop signal provided to

the motor. (Unit of measure is [%])

Table 18 – Motor power state command format

ID 7 Parameters Length

(bytes)

1

Description Turn motor power on/off

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 1 Motor Enabled

State

BOOL Enabled state of battery

power to motor

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 35

Table 19 – Encoder power state command format

ID 8 Parameters length (bytes) 1

Description Turn encoder power on/off

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 1 Encoder Enabled

State

BOOL Enabled state of Encoder

sensor

Table 20 – Hall power state command format

ID 9 Parameters length (bytes) 1

Description Turn Hall sensors power on/off

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 1 Hall Sensor Enabled

State

BOOL Enabled state of Hall

sensors

Table 21 – Control mode command format

ID 10 Parameters length

(bytes)

1

Description Set the motor control mode

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 8 Control

Mode

ENUM Control mode of motor. Possible values

are in Table 22 – Control mode

enumeration values

Table 22 – Control mode enumeration values

Numeric

value

Name Description

0 Idle Idle mode

1 No Control No control mode

2 Duty Cycle Input Duty cycle input mode

3 Speed Controller Speed controller mode

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 36

Table 23 – Backup wheel mode command format

ID 12 Parameters length

(bytes)

1

Description Set the back-up wheel mode

Parameters Offset

(bits)

Length

(bits)

Name Data type Description

 0 1 BackupMode BOOL Enable the back-up

mode

Table 24 – Clear errors command format

ID 20 Parameters length

(bytes)

1

Description Clear the processor error flags

Parameters Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 8 Clear Error

Parameter

UINT Clear error flags parameter. This has

to be set to 85 (decimal) to clear the

flags

Wait 5 seconds after setting any address or gain before sending any

other commands or switching off the wheel. This ensures it is

correctly written to EEPROM.

Table 25 – Set I2C address command format

ID 31 Parameters length (bytes) 1

Description Set I2C address

Parameters Offset (bits) Length (bits) Name Data type Description

 0 8 I2C Address UINT I2C address

Table 26 – Set CAN mask command format

ID 32 Parameters length (bytes) 1

Description Set CAN mask

Parameters Offset (bits) Length (bits) Name Data type Description

 0 8 CANAddress UINT CAN address

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 37

Table 27 – Set PWM gain command format

ID 33 Parameters length (bytes) 3

Description Set general PWM proportional gain

Parameters Offset (bits) Length (bits) Name Data type Description

 0 16 K INT Main gain

 16 8 KMultiplier UINT Multiplier for main gain

Table 28 – Set main gain command format

ID 34 Parameters length

(bytes)

6

Description Set gain of main speed controller

Parameters Offset

(bits)

Length

(bits)

Name Data type Description

 0 16 Ki UINT Integrator gain

 16 8 KiMultiplier UINT Multiplier for integrator

gain

 24 16 Kd UINT Feedback gain

 40 8 KdMultiplier UINT Multiplier for feedback

gain

Table 29 – Set backup gain command format

ID 35 Parameters length

(bytes)

6

Description Set gain of backup speed controller

Parameters Offset

(bits)

Length

(bits)

Name Data type Description

 0 16 Ki UINT Integrator gain

 16 8 KiMultiplier UINT Multiplier for integrator

gain

 24 16 Kd UINT Feedback gain

 40 8 KdMultiplier UINT Multiplier for feedback

gain

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 38

Table 30 – Identification telemetry format

ID 128 Frame length (bytes) 8

Description Identification information for this node

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 8 Node type UINT Node type identifier. For

CubeControl Motor, this field will

always have the value 8

 8 8 Interface version UINT Interface version. This field should

have a value of 1

 16 8 Firmware

version (Major)

UINT Firmware major version

 24 8 Firmware

version (Minor)

UINT Firmware minor version

 32 16 Runtime

(seconds)

UINT Number of seconds since processor

start-up. (Unit of measure is [s])

 48 16 Runtime

(milliseconds)

UINT Number of milliseconds (after the

integer second) since processor

start-up. (Unit of measure is [ms])

Table 31 – Extended identification telemetry format

ID 129 Frame length (bytes) 4

Description Extended Identification information on this node

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Serial

Number

UINT Serial number of this unit

 16 8 I2C Address UINT I2C address of this unit

 24 8 CAN Address UINT CAN mask of this unit

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 39

Table 32 – Wheel status telemetry format

ID 130 Frame length (bytes) 8

Description Current status telemetry of wheel electronics

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Runtime

(seconds)

UINT Number of seconds since

processor start-up. (Unit of

measure is [s])

 16 16 Runtime

(milliseconds)

UINT Number of milliseconds (after the

integer second) since processor

start-up. (Unit of measure is [ms])

 32 16 Reserved UINT Shows 0 value

 48 8 Motor control

mode

ENUM Current control mode. Possible

values are in Table 22 – Control

mode enumeration values

 56 1 Backup-mode

state

BOOL Backup-mode state

 57 1 Motor switch

state

BOOL Motor switch state

 58 1 Hall sensor

switch state

BOOL Hall sensor switch state

 59 1 Encoder switch

state

BOOL Encoder switch state

 60 1 Error Flag BOOL Indicates whether an error has

occurred

Table 33 – Wheel speed telemetry format

ID 133 Frame length

(bytes)

2

Description Wheel speed measurement

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Wheel

Speed

INT Wheel speed measurement in rpm.

Formatted value is obtained using the

formula: (formatted value) [RPM] = (raw

channel value)/2.0

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 40

Table 34 – Wheel reference telemetry format

ID 134 Frame length

(bytes)

2

Description Wheel reference speed

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Wheel

Reference

INT Wheel reference speed in rpm.

Formatted value is obtained using the

formula: (formatted value) [RPM] = (raw

channel value)/2.0

Table 35 – Wheel current telemetry format

ID 135 Frame length

(bytes)

2

Description Wheel current measurement

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Wheel

Current

UINT Wheel current measurement. Formatted

value is obtained using the formula:

(formatted value) [mA] = (raw channel

value)*0.48828125

Table 36 – Wheel data telemetry format

ID 137 Frame length

(bytes)

6

Description Complete wheel data

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Wheel

Speed

INT Wheel speed measurement in rpm.

Formatted value is obtained using the

formula: (formatted value) [RPM] = (raw

channel value)/2.0

 16 16 Wheel

Reference

INT Wheel reference speed in rpm. Formatted

value is obtained using the formula:

(formatted value) [RPM] = (raw channel

value)/2.0

 32 16 Wheel

Current

UINT Wheel current measurement. Formatted

value is obtained using the formula:

(formatted value) [mA] = (raw channel

value)*0.48828125

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 41

Table 37 – Wheel data additional telemetry format

ID 138 Frame length

(bytes)

4

Description Additional wheel data

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Wheel

Duty

INT Current duty cycle command to motor

 16 16 Wheel

Speed

Backup

INT Backup wheel speed measurement in rpm.

Formatted value is obtained using the

formula: (formatted value) [RPM] = (raw

channel value)/2.0

Table 38 – PWM gain telemetry format

ID 139 Frame length (bytes) 3

Description General PWM gain

Channels Offset (bits) Length (bits) Name Data type Description

 0 16 K INT Main gain

 16 8 Kmultiplier UINT Multiplier for main gain

Table 39 – Main gain telemetry format

ID 140 Frame length (bytes) 6

Description Main speed controller gain values

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Ki UINT Integrator gain

 16 8 KiMultiplier UINT Multiplier for integrator

gain

 24 16 Kd UINT Feedback gain

 40 8 KdMultiplier UINT Multiplier for feedback gain

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 42

Table 40 – Backup gain telemetry format

ID 141 Frame length (bytes) 6

Description Backup speed controller gain values

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 16 Ki UINT Integrator gain

 16 8 KiMultiplier UINT Multiplier for integrator

gain

 24 16 Kd UINT Feedback gain

 40 8 KdMultiplier UINT Multiplier for feedback gain

Table 41 – Status and error flags telemetry format

ID 145 Frame length (bytes) 1

Description Processor status and error flags

Channels Offset

(bits)

Length

(bits)

Name Data

type

Description

 0 1 Invalid Telemetry BOOL An invalid telemetry request

was received

 1 1 Invalid

Telecommand

BOOL An invalid telecommand was

received

 2 1 Encoder Error BOOL Encoder indicates an error

 3 1 UART Error BOOL Error in UART protocol

 4 1 I2C Error BOOL Error in I2C protocol

 5 1 CAN Error BOOL Error in CAN protocol

 6 1 Configuration

Error

BOOL Configuration load error

 7 1 Speed Error BOOL Speed measurements

indicates an error

Part: CubeWheel

Doc: User Manual

Ver: 1.16

Page: 43

7. Document Version History

Version Author(s

)

Pages Date Description of change

0.1 HWJ ALL 04/12/2015 First draft

1.0 HWJ ALL 08/12/2015 Added Medium and Large Wheel info

1.1 GJVV ALL 14/03/2016 Several major updates

1.2 GJVV 8 18/03/2016 Very important change to angular

momentum vector

1.3 GJVV 9,19 15/06/2016 Specifications updated

Updated details for incoming health check

1.4 GJVV ALL 26/07/2016 Updated template

Updated wheel dimensions

1.5 GJVV 10,24,

25

17/08/2016 Updated power specifications

Additional UART protocol information

1.6 GJVV 10 17/08/2016 Updated masses based on accurate CADs

1.7 DGS ALL 22/11/2016 Added changes for new support PCB

1.8 MK 10 13/02/2017 Update Medium wheel specs

1.9 DGS ALL 15/05/2017 Update for new PCB enable line

1.10 MK ALL 22/06/2017 Removed imbalance spec; General grammar

1.11 MK 10 27/06/2017 Added new static imbalance spec

1.12 DGS 8,31,

32

12/07/2017 Reset TCMD fixed and explained currents

measured during idle and no-control modes

1.13 DGS 10 25/10/2017 New power specs for vacuum bearing

1.14 DGS All 18/07/2019 Added Small Plus descriptions

1.15 DGS 12 18/09/2019 Changed specifications table

1.16 DGS 33, 34 22/06/2021 Changed references torque

